Exercise 27

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

$$
x^{2}-x y-y^{2}=1, \quad(2,1), \quad \text { (hyperbola) }
$$

Solution

The aim is to evaluate y^{\prime} at $x=2$ and $y=1$ in order to find the slope there. Differentiate both sides of the given equation with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2}-x y-y^{2}\right)=\frac{d}{d x}(1) \\
\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}(x y)-\frac{d}{d x}\left(y^{2}\right)=0 \\
(2 x)-\left[\frac{d}{d x}(x)\right] y-x\left[\frac{d}{d x}(y)\right]-\left[2 y \cdot \frac{d}{d x}(y)\right]=0 \\
2 x-(1) y-x\left(y^{\prime}\right)-2 y y^{\prime}=0
\end{gathered}
$$

Solve for y^{\prime}.

$$
\begin{gathered}
2 x-y=(x+2 y) y^{\prime} \\
y^{\prime}=\frac{2 x-y}{x+2 y}
\end{gathered}
$$

Evaluate y^{\prime} at $x=2$ and $y=1$.

$$
y^{\prime}(2,1)=\frac{2(2)-(1)}{(2)+2(1)}=\frac{3}{4}
$$

Therefore, the equation of the tangent line to the curve represented by $x^{2}-x y-y^{2}=1$ at $(2,1)$ is

$$
y-1=\frac{3}{4}(x-2) .
$$

Below is a graph of the curve and the tangent line at $(2,1)$.

